Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MAbs ; 14(1): 2083466, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35708974

RESUMO

Antibody-directed nanotherapeutics (ADNs) represent a promising delivery platform for selective delivery of an encapsulated drug payload to the site of disease that improves the therapeutic index. Although both single-chain Fv (scFv) and Fab antibody fragments have been used for targeting, no platform approach applicable to any target has emerged. scFv can suffer from intrinsic instability, and the Fabs are challenging to use due to native disulfide over-reduction and resulting impurities at the end of the conjugation process. This occurs because of the close proximity of the disulfide bond connecting the heavy and light chain to the free cysteine at the C-terminus, which is commonly used as the conjugation site. Here we show that by engineering an alternative heavy chain-light chain disulfide within the Fab, we can maintain efficient conjugation while eliminating the process impurities and retaining stability. We have demonstrated the utility of this technology for efficient ADN delivery and internalization for a series of targets, including EphA2, EGFR, and ErbB2. We expect that this technology will be broadly applicable for targeting of nanoparticle encapsulated payloads, including DNA, mRNA, and small molecules.


Assuntos
Nanopartículas , Anticorpos de Cadeia Única , Dissulfetos/química , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Nanopartículas/química
2.
Sci Transl Med ; 11(512)2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578241

RESUMO

Tumor necrosis factor receptor 2 (TNFR2) is the alternate receptor for TNF and can mediate both pro- and anti-inflammatory activities of T cells. Although TNFR2 has been linked to enhanced suppressive activity of regulatory T cells (Tregs) in autoimmune diseases, the viability of TNFR2 as a target for cancer immunotherapy has been underappreciated. Here, we show that new murine monoclonal anti-TNFR2 antibodies yield robust antitumor activity and durable protective memory in multiple mouse cancer cell line models. The antibodies mediate potent Fc-dependent T cell costimulation and do not result in significant depletion of Tregs Corresponding human agonistic monoclonal anti-TNFR2 antibodies were identified and also had antitumor effects in humanized mouse models. Anti-TNFR2 antibodies could be developed as a novel treatment option for patients with cancer.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Animais , Neoplasias do Colo/imunologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/terapia , Modelos Animais de Doenças , Feminino , Humanos , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
3.
Proc Natl Acad Sci U S A ; 116(15): 7533-7542, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30898885

RESUMO

Activation of the Met receptor tyrosine kinase, either by its ligand, hepatocyte growth factor (HGF), or via ligand-independent mechanisms, such as MET amplification or receptor overexpression, has been implicated in driving tumor proliferation, metastasis, and resistance to therapy. Clinical development of Met-targeted antibodies has been challenging, however, as bivalent antibodies exhibit agonistic properties, whereas monovalent antibodies lack potency and the capacity to down-regulate Met. Through computational modeling, we found that the potency of a monovalent antibody targeting Met could be dramatically improved by introducing a second binding site that recognizes an unrelated, highly expressed antigen on the tumor cell surface. Guided by this prediction, we engineered MM-131, a bispecific antibody that is monovalent for both Met and epithelial cell adhesion molecule (EpCAM). MM-131 is a purely antagonistic antibody that blocks ligand-dependent and ligand-independent Met signaling by inhibiting HGF binding to Met and inducing receptor down-regulation. Together, these mechanisms lead to inhibition of proliferation in Met-driven cancer cells, inhibition of HGF-mediated cancer cell migration, and inhibition of tumor growth in HGF-dependent and -independent mouse xenograft models. Consistent with its design, MM-131 is more potent in EpCAM-high cells than in EpCAM-low cells, and its potency decreases when EpCAM levels are reduced by RNAi. Evaluation of Met, EpCAM, and HGF levels in human tumor samples reveals that EpCAM is expressed at high levels in a wide range of Met-positive tumor types, suggesting a broad opportunity for clinical development of MM-131.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Molécula de Adesão da Célula Epitelial/antagonistas & inibidores , Fator de Crescimento de Hepatócito/metabolismo , Neoplasias Experimentais/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Camundongos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
MAbs ; 9(1): 58-67, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27854147

RESUMO

Antibody-targeted nanoparticles have great promise as anti-cancer drugs; however, substantial developmental challenges of antibody modules prevent many candidates from reaching the clinic. Here, we describe a robust strategy for developing an EphA2-targeting antibody fragment for immunoliposomal drug delivery. A highly bioactive single-chain variable fragment (scFv) was engineered to overcome developmental liabilities, including low thermostability and weak binding to affinity purification resins. Improved thermostability was achieved by modifying the framework of the scFv, and complementarity-determining region (CDR)-H2 was modified to increase binding to protein A resins. The results of our engineering campaigns demonstrate that it is possible, using focused design strategies, to rapidly improve the stability and manufacturing characteristics of an antibody fragment for use as a component of a novel therapeutic construct.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Efrina-A2/imunologia , Imunoconjugados/imunologia , Nanopartículas , Anticorpos de Cadeia Única/imunologia , Animais , Humanos , Região Variável de Imunoglobulina/imunologia , Engenharia de Proteínas/métodos , Estabilidade Proteica , Receptor EphA2 , Anticorpos de Cadeia Única/biossíntese
5.
MAbs ; 7(4): 752-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25961854

RESUMO

Monoclonal antibodies and antibody-like molecules represent a fast-growing class of bio-therapeutics that has rapidly transformed patient care in a variety of disease indications. The discovery of antibodies that bind to particular targets with high affinity is now a routine exercise and a variety of in vitro and in vivo techniques are available for this purpose. However, it is still challenging to identify antibodies that, in addition to having the desired biological effect, also express well, remain soluble at different pH levels, remain stable at high concentrations, can withstand high shear stress, and have minimal non-specific interactions. Many promising antibody programs have ultimately failed in development due to the problems associated with one of these factors. Here, we present a simple high-performance liquid chromatography (HPLC)-based screening method to assess these developability factors earlier in discovery process. This method is robust and requires only microgram quantities of proteins. Briefly, we show that for antibodies injected on a commercially available pre-packed Zenix HPLC column, the retention times are inversely related to their colloidal stability with antibodies prone to precipitation or aggregation retained longer on the column with broader peaks. By simply varying the salt content of running buffer, we were also able to estimate the nature of interactions between the antibodies and the column. We believe this approach should generally be applicable to assessment of the developability of other classes of bio-therapeutic molecules, and that the addition of this simple tool early in the discovery process will lead to selection of molecules with improved developability characteristics.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Humanos , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
6.
Mol Cancer Ther ; 13(2): 410-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24282274

RESUMO

Although inhibition of the insulin-like growth factor (IGF) signaling pathway was expected to eliminate a key resistance mechanism for EGF receptor (EGFR)-driven cancers, the effectiveness of IGF-I receptor (IGF-IR) inhibitors in clinical trials has been limited. A multiplicity of survival mechanisms are available to cancer cells. Both IGF-IR and the ErbB3 receptor activate the PI3K/AKT/mTOR axis, but ErbB3 has only recently been pursued as a therapeutic target. We show that coactivation of the ErbB3 pathway is prevalent in a majority of cell lines responsive to IGF ligands and antagonizes IGF-IR-mediated growth inhibition. Blockade of the redundant IGF-IR and ErbB3 survival pathways and downstream resistance mechanisms was achieved with MM-141, a tetravalent bispecific antibody antagonist of IGF-IR and ErbB3. MM-141 potency was superior to monospecific and combination antibody therapies and was insensitive to variation in the ratio of IGF-IR and ErbB3 receptors. MM-141 enhanced the biologic impact of receptor inhibition in vivo as a monotherapy and in combination with the mTOR inhibitor everolimus, gemcitabine, or docetaxel, through blockade of IGF-IR and ErbB3 signaling and prevention of PI3K/AKT/mTOR network adaptation.


Assuntos
Anticorpos Biespecíficos/farmacologia , Proliferação de Células/efeitos dos fármacos , Receptor ErbB-3/antagonistas & inibidores , Receptor IGF Tipo 1/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Anticorpos Biespecíficos/administração & dosagem , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Western Blotting , Linhagem Celular Tumoral , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Docetaxel , Everolimo , Feminino , Humanos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3/imunologia , Receptor IGF Tipo 1/imunologia , Sirolimo/administração & dosagem , Sirolimo/análogos & derivados , Serina-Treonina Quinases TOR/metabolismo , Taxoides/administração & dosagem , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
7.
MAbs ; 5(2): 237-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23392215

RESUMO

Multispecific antibody-like molecules have the potential to advance the standard-of-care in many human diseases. The design of therapeutic molecules in this class, however, has proven to be difficult and, despite significant successes in preclinical research, only one trivalent antibody, catumaxomab, has demonstrated clinical utility. The challenge originates from the complexity of the design space where multiple parameters such as affinity, avidity, effector functions, and pharmaceutical properties need to be engineered in concurrent fashion to achieve the desired therapeutic efficacy. Here, we present a rapid prototyping approach that allows us to successfully optimize these parameters within one campaign cycle that includes modular design, yeast display of structure focused antibody libraries and high throughput biophysical profiling. We delineate this approach by presenting a design case study of MM-141, a tetravalent bispecific antibody targeting two compensatory signaling growth factor receptors: insulin-like growth factor 1 receptor (IGF-1R) and v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (ErbB3). A MM-141 proof-of-concept (POC) parent molecule did not meet initial design criteria due to modest bioactivity and poor stability properties. Using a combination of yeast display, structured-guided antibody design and library-scale thermal challenge assay, we discovered a diverse set of stable and active anti-IGF-1R and anti-ErbB3 single-chain variable fragments (scFvs). These optimized modules were reformatted to create a diverse set of full-length tetravalent bispecific antibodies. These re-engineered molecules achieved complete blockade of growth factor induced pro-survival signaling, were stable in serum, and had adequate activity and pharmaceutical properties for clinical development. We believe this approach can be readily applied to the optimization of other classes of bispecific or even multispecific antibody-like molecules.


Assuntos
Anticorpos Biespecíficos , Desenho de Fármacos , Engenharia de Proteínas/métodos , Receptor ErbB-3/imunologia , Receptor IGF Tipo 1/imunologia , Anticorpos de Cadeia Única , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Células CHO , Cricetulus , Biblioteca Gênica , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...